
Document No. 2000-001

TI . ; O Y31 December 1989

0o General Definition of Project
(Ada / SQL Binding)

N for theC4

fs R oogy for Adaptable ter

CnRc Seno. No. 9 28-8003

31 December 1989 DTIC
ILELECTE__

•~~
-',:kA "

.41W RATONA

APFW~Ada

R. Sorm ApproveREBMRT
Oederal

Seto DMi o
No, 07040188

Gaithrsbur, MD,: 2087

1. AGENCY USE ONLY (eve blankC 2. REPORT DATE 3. REPORT TYP AND DATES COVERE

IDecember 31, 1989 Final
4. SUPTLNTYE 5 UNNG NUMBERSGeneral Definition of Project (Ada/SQL Binding) C: F19628-88-D-0032

. AUTHOR(S)

S. Phillips

7. PER4FORMING ORGANIZATION NAME(S) AND AOORESS(LS) a. PERFORMING ORGANIZATION4

IBM Federal Sector Division REPORT NUMBER

800 N. Frederick Avenue
Gaithersburg, MD 20879

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
Electronic Systems Division AGENCY REPORT NUMBER

Air Force SystemsCommand, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 2000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE.

13. ABSTRACT (Maximum 200words)

A standard binding was needed between Ada and SQL (Structured Query Language), the
ehdANSIolo san). SM a m o fr dccessing commercial relata base management sys-tems (DBMS's). SQL was not designed to be embedded within applications in general
purpose programming languages, such as Ada. Previously developed Ada-SQL bindings
gave had various technical drawbacks. -

i A prototype Ada-SQL binding was built by automating the SQL Ada Module Extension
methodology (SAME). SAME is a method for building Ada applications that access

DBMS's via SQL. SAME extends SQL by exploiting the features of Ada.

This Technical Plan presents the background, technical approach, and top-level capa-
bilities of the project. It also discusses such technical problems as storing
arbitrary data types in a data PaSe and using SAME without a module language compiler

rn

14, SUBJECT TERMS 1. NUMER Of- PAGES

STARS, Ada, SQL, Structured Query Language, data base 2

management system, DBMS
16. PRICE CODE

1/. SECURITY CLASSIFICATION 18. SECURITY CLASSIFrCATION 19. SECURITY CLASS.I.CATION 20. LIMITATION OF ABSTRACT,
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified U1,

N1,rJ /10 0 .'Iif-5500(Vav af 1*)rrn '9 (4-.v 2Wi

General Definition of Project
(Ada / SQL Binding)

for the
Software Technology for Adaptable, Reliable Systems

(STARS) Program

Contract No. Fl 9628-88-D-0032

Task IR67 - SQL / Ada Program Language Interface

CDRL Sequence No. 2000

31 December 1989

Aco81on For

Prepared for: NI ~&

Electronic Systems Division Justifcto
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000 &AB~

iRAvaflrbility OodeS

iAva 11 and/or
Prepared by: Special

IBM Systems Integration DivisionI
800 North Frederick Avenue

Gaithersburg, MD 20879

LMSC-F376700

Technical Plan
for

Ada/SQL Binding
Supporting the SAME Methodology

Contract Number: F19628-88-D-0032/0002

CDRL Number 2000

December 3, 1989

Submitted to:

IBM Corporation
Systems Integration Division

800 N. Frederick Road

Gaithersburg, Maryland 20879

Atm: Ray Grimes

'-Lockheed
Missiles & Space Company, Inc.
Software Technology Center
2100 East SL Elmo Road
Org. 96-10 / Bldg. 30E
Austin, TX 78744
(512) 448-5740

E-mail: phillips@stc.lockheed.com

* The Ada/SQL Binding Project LMCDF3 76000December 5, 1989CDL00

A Technical Plan for
Ada/SQL Binding Supporting the SAME Methodology

TABLE OF CONTENTS

BACKGROUND...1I

PROJECT DES CRIEPTION.. 2

TECHNICAL APPROACH AND TOP-LEVEL DESCRIPTION.............. 3
OF PROPOSED FUNCTIONAL CAPABILITIES5

Packages .. 5
DomainView ... 5
AbstractInterfaceView .. 6
Generatr...S upport ... 6
AbstractDomainGenerator... 6
AbstractIntei-faceGenerator.. 6
Domain Packages ... 6
Base...SpecificDomains... 7
AbstractInterface Module ... 7
SQL M odule ... 7Application Program..7

Ada PACKAGE SPECIFICATIONS DEFINING 7
INTERCOMPONENT INTERFACES

Domain_-View Procedure.. 8
AbstractDomainGenerator... 9
AbstractInterfaceView .. 9
Abstract_-Interface_-Generator...11
Suppliers_-DefinitionPkac ... 13
AbstractInterface (Ada Spec and Body)..................................13

DEVELOPMENT APPROACH .. 14
Decimal Data Type ... 15
Arbitrary Data Types ..
Using SAME Without a Module Language Compiler i16

REFERENCES .. 16

LIST OF ILLUSTRATIONS

Figure 1. Configuration of SAME Methodology............ 2
Figure 2. Detailed Architectural Structure of the Proposed Svstem............ 5

Lockheed Software Technology Centcr

The Ada/SQL Binding Project LMSC-F376700
December 5, 1989 CDRL 2000

A Technical Plan for Ada/SQL Binding.
Supporting the SAME Methodology

The Ada/SQL Binding project will implement a binding between the Ada programming language

and a relational data base management system, specifically by automating the SQL Ada Module

Extensions (SAME) methodology as described in Guidelines for the Use of the SAME, an SEI

Technical Report [1]. This is the technical plan, CDRL 2000, for implementing a prototype

binding supporting that methodology.

BACKGROUND

Conventional approaches for binding ANSI-standard SQL to Ada allow embedding SQL

statements directly into Ada programs, thereby creating something that is neither pure SQL nor

pure Ada. A preprocessor is used to remove the SQL statements and replace them with valid Ada

subprogram calls. However, direct access to the dam base is still part of the application program.

By using SAME approach, these two contexts, SQL statements and Ada statements, are separate

modules thereby implementing a modular approach to data-base definition and access. This

modular approach allows the efficiency of having programming tasks assigned to programmers

who specialize in each area.

SAME is a method for the construction of Ada applications that access data base management

systems whose data manipulation language is SQL. As its name implies, SAME extends the

Module Language defined in the ANSI SQL standard Database Language-SQL [2] by exploiting

the capabilities of Ada. The defining characteristic of the module language is the collocation of

SQL statements, physically separated from the Ada application, in an object called the concrete

module. SAME treats the module much the same as it treats any other foreign language; that is, it

imports complete modules, not language fragments.

SAME provides the binding between these two modules through an interface layer, called the

abstract module. The abstract module serves to transform data from abstract definitions to concrete

types (and back again). The abstract module makes calls to an Ada specification representative of

the SQL module (the concrete interface).

During application design and development, SAME is used as follows:

* The abstract domains that occupy data base columns are defined and described as Ada types.

This is done using standard packages available to users of SAME methodology.

* The application programmer, along with the SQL programmer, determines the services that will

be needed from the data base. They are coded in SQL and collected in a concrete module.

Lockheed Software Technology Center 1

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC.F376700

* An abstract interface is created. This is a set of package specifications declaring the record type

definitions needed to describe row records and the procedure declarations needed.to access the

relevant concrete module procedures. This interface will be called by the Ada application.

* The type within the abstract domain definition must be determined for each data item at the

abstract interface.
" The abstract module, the bodies of the procedures declared in the abstract interface, is created.
* The application program is written. It can be written once the abstract interface specification is

completed and concurrently with the creation of the abstract module bodies because the

application does not need the module bodies to compile against.

PROJECT DESCRIPTION

The purpose of this effort is to produce a system that will allow an Ada program to talk to a

commercial data base management system (DBMS). The delivered packages can be tailored to

support any SQL-based DBMS. The first prototype will be developed on a Digital VAXstation

2000. This hardware choice was driven by the fact that a production-quality SQL module language

compiler and its associated relational data base management system are available on this platform

(as is an acceptable Ada compiler and development environment). Currently, this is the only

readily available system with all needed software. The module language compiler could be

simulated using one of many DBMS systems that support embedded SQL. However, SAME was

intended for use with a module language compiler, which makes this choice a valid one. Figure 1

shows the configuration of an Ada application accessing a DBMS using SAME.

SSOL SlandarSPakage I

ogre .mn Pa ionge of Sl
based on STP h a h

Packg es(STP)

fl.......... . I t ra e,6 l.,1.1,

Application I (pe)Concrete SQL DM

Program Abtat ... Interface Module DM

Module (pc

(body) "

Figure 1. Configuration of SAME Methodology. (Black arrows indicate

Ada visibility; hatched arrows show data flow.)

Lockheed Software Technology Center 2

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

TECHNICAL APPROACH AND TOP-LEVEL DESCRIPTION OF
PROPOSED FUNCTIONAL CAPABILITIES

The approach for this project is based upon previous work completed for STARS Foundation

Contract N60921-87-C-0293. That effort used input defining the data base structure gathered from

a data base administrator (in the form of an Ada procedure that instantiated many generics) and

automatically generated an Ada package for use by the application programmer and valid SQL

statements that provided data definition of the required tables. This project will receive the same

form of input from a user (in this case, an AbstractInterface programmer) and automatically

generate domain packages, the abstract interface, and the abstract module. It avoids preprocessors,

and all of the activity necessary to support it is hidden from the application programmer. In this

scenario, the interface prograrrmer provides the interface that is to be WITHed by an application.

In order to provide the application programmers with these facilities, the interface programmer

must understand both the data base structure and each application's needs.

Providing automatic generation of several packages from one source offers several advantages:

* The work load is less. By writing and executing only one Ada procedure, many packages are

automatically generated.

* All of these packages are related, and generating them from one source guarantees compatibility.

" All necessary suppoIt for the automatic generation is hidden from the Ada and SQL

programmers. If the underlying data base is changed, the Ada application may not even need

recompilation.

" This structure requires no preprocessing of source code in any language, which eliminates

another source of error and guarantees that any certified Ada compiler will be able to provide

this function. This is achieved through the use of Ada generics.

The first three points are goals of all such efforts and should be considered minimum requirements.

The fourth avoids preprocessors and depends heavily on nested Ada generics. Examples of Ada

code are provided later in this document to describe this approach..

The interface programmer initiates the process of making the data base available to the Ada

programmer. The first step in this process will require the interface programmer to write an Ada

procedure, following specific rules and guidelines, that automatically creates the domain packages

used by the application. The first step in writing this description is to instantiate the

AbstractDomainGenerator generic with two parameters, one defining the name of the domain

Lockheed Software Technology Center 3

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

package and the second naming the columns within the data base that are being defined as abstract

domains. This generic will be instantiated for each separate domain package.

The second step in this procedure will be to instantiate the DomainGenerator generic for each

domain specified in the initial instantiation. This method provides enough redundancy to check for

undefined or multiply defined domains (or columns). The generic is instantiated with the domain

name, its class, range values, and whether or not the type supports null values.

When this Ada procedure is compiled and executed, syntactically valid Ada packages that support

SAME abstract domain semantics are automatically generated. These are compiled and made

available to the application programmer. Also, an Ada package specification

Base_Specific.Domains is automatically generated to be used by the interface programmer as he

completes his task by automatically generating the AbstractInterface (Ada package specification

and body).

To generate the AbstractInterface, the interface programmer will once again write an Ada

procedure that instantiates several generics. This procedure will WITH the previously generated

Ada package specification BaseSpecificDomains that contains an enumerated type of all valid

domains. This will ensure consistency between parameters of the procedures of the abstract

interface and the actual domains.

The first step in writing this procedure is to instantiate the AbstractInterfaceGenerator generic. It

is instantiated with the name of the abstract interface package, an enumerated type representing the

row record names to be defined, and an enumerated type representing the procedure names that

will make up the interface. Once this is instantiated, subsequent nested generics will be instantiated

with objects of these two enumeration types, ensuring semantic consistency. The next level of

generic is instantiated for each row record. The generic parameters are the rowname (of the

previously defined row-record-names type) and an enumerated type representing the name of each

record component. This is followed by an instantiation of generic package

GenerateRecord_Component for each component in the record.

Still within the AbstractInterfaceGenerator, the next step is to instantiate the GenerateProcedure

generic. The parameters to the generic are the procedure name and an enumerated type

representing parameter names. This is instantiated once for each procedure in the interface. The

next level generic is instantiated once for each parameter of the procedure. This generic is

instantiated with the parameters name, its type, and its mode. By nesting generics in this manner

the implementation is provided with enough semantic knowledge of the structure of the

AbstractInterface so that most incomplete definitions, missing definitions, and semantically

invalid definitions are caught at compilation. After successful compilation and execution, an Ada

Lockheed Software Technology Center 4

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

package representing the AbstractInterface has been automatically generated. The package is

compiled and made available to the application programmer. It is this package that wil interface

the DBMS and the Ada program. Figure 2 represents the detailed architectural structure of the

proposed system. Each functional component is further explained in the next section.

Packages

The following paragraphs describe the packages in Figure 2 in detail. SAME standard packages

are not included since they are not being developed as part of this contract.

Step 2.
Interface
programmer tandiS.
writes Da Abstrc

8-ase-Specific Ada Application
Step 3. Domnans. Application programmer
Interface - Program writes

programmer i: ..w rite sA b s
Absrc Arat InterfaceA
-Doa.nIInterace nte

View eet r (Spec andSt

Fiue .DealDoacitetua StAtrdfteI~rpsdSse.(atchedlinesio
indcat geertin wihthprowedponigioce eeatdiode soidalies

indicatee SAEpcagsrnolgtrovlghwruoaiall gen rtesoe

Unshadedovals shw manualyi itn hatched= ones Sw code epoie

D rte by teirf e programmer t nh o

writes Abstractwite

View~an SeetLo (Se an Ste 1

SQL Body)

:ii SOL Database~i~:i DM

::i!.Error Packa e :i -:

Figure 2. Detailed Architectural Structure of the P'roposed System. (Hatched lines
indicate generation, with the arrowhead pointing to the generated code; solid lines

show Ada visibility with the arrowhead pointing to the W THed code. Dark ovals
indicate SAME packages, and lighter ovals show automatically generated code.
Unshaded ovals show manually input, and hatched ones show code to be providedfior the binding. Packages used only during development appear to the left of the
vertical gray bar; packages used at run atime appear to the right.)

Domain-View

DomainView is an Ada procedure written by the interface programmer to define the domains

needed by the application programmer. When this procedure is compiled and executed, Ada

packages representing the domains are automaticaly generated for use by the application program.

Lockheed Software Technology Center 5

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

As such, it is not a deliverable of this project, rather the rules and methods for writing this

procedure will be delivered. Its size will depend upon the number of domains to be included in the

domain package, as well as each domain's characteristics (type, null-bearing, etc.). The procedure

will be written specifically for each application (or set of applications), therefore each procedure is

100-percent new code.

AbstractInterface_View

AbstractInterfaceView is the second Ada procedure that must be written by the interface

programmer. It is specific to the services requested of the data base and particular rows in the data

base. Again, it is not a deliverable of this project, but the rules and methods for writing this

procedure will be delivered. The procedure will be written specifically for each application (set of

applications), therefore each procedure is 100-percent new code.

Generator-Support

GeneraatorSupport is an Ada package specification that will contain common declarations

(generally enumerated types) for the packages to be delivered. It will contain approximately 100

lines of new code. (It is not shown in Figure 2 since it contains only global declarations.)

AbstractDomainGenerator

Abstract_DomainGenerator is a generic Ada package that contains several layers of nested

generics. It will be instantiated by the DomainView written by the interface programmer. The

instantiation will be used to create the domain packages which will be WITHed by the application

pro rammer and the abstract interface. It is a deliverable of this project and will be approximately

325 lines of Ada code. Approximately 15 percent of this code will be reused from the previous

STARS contract.

Abstract_Interface_Generator

AbstractInterfaceGenerator is a generic Ada package that contains several layers of nested

generics. It will be instantiated by the AbstractInterface View written by the interface

programmer. The instantiation will be used to generate the Ada specification and body of the

abstract interface module. It is a deliverable of this project and will be approximately 975 lines of

Ada code. Approximately 20 percent of this code will be reused from the previous STARS

contract.

Domain Packages

The Domain packages will be automatically generated by the instantiation of the Domain View,

written by the interface programmer. They will be semantically correct Ada and adhere to the

SAME methodology. They will vary in size depending on the number of domains needed by the

application.

Lockheed Software Technology Center 6

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

BaseSpecificDomains

BaseSpecificDomains is an automatically generated Ada package specification that will be used

by the AbstractInterfaceGeneric. It will vary in size depending on the number of domains

needed by the application.

AbstractInterface Module

AbstractInterface module is an Ada package (specification and body) automatically generated by

the instantiation of the AbstractInterface generic. It will vary in size depending on the number of

SQL services needed by the application and the types of information requested.

SQL Module

SQL Module represents the Ada package specification and its corresponding SQL module, which

contains the SQL statements to implement services requested to/from the data base. This package

will be written manually for each application (set of applications) and its size will depend on the

application.

Application Program

The Ada application program delivered for demonstration will be dependent on the data base

services requested. The application will be 100-percent new code.

Ada PACKAGE SPECIFICATIONS DEFINING INTERCOMPONENT
INTERFACES

The following listings are examples of the structure outlined in the preceding paragraphs. They are

by no means complete but are intended to demonstrate the feasibility of the approach. Specifically,

the specifications of the generic packages AbstractDomainGenerator and AbstractInterface

contain some features that are experimental and omit others that will be needed in production.

Specifically, we have not addressed 2onveying SQL semantic information for generation of the

Abstract module bodies. Specific information will be needed to determine the logic of these

bodies. Further research and design prototypes will be needed to provide a straightforward

implementation for the interface programmer. The bodies of the these packages have not been

included, but they will, of course, be deliverable. Since the best way to be precise about the

proposed interface is to present compilable Ada specs, the following is given with some

explanation.

Lockheed Software Technology Center 7

CDRL 2000 A Technical Plan for Ada(SQL BindingSupporting the SAME Methodology LMSC-F376700

DomainView Procedure

The DomainView procedure is written by the interface programmer to describe the domans to be

used by the Ada application. Rules and methods for writing these procedure will be included in the

user documentation, CDRL 2020.

with generator_support;
use generatorsupport;

with abstract-domaingenerator;

-- This procedure is written by the interface programmer to
-- describe the domains to be used by the application
-- programmer and the abstract interface

procedure domainview is
begin
declaretype doms is (sno, sname, status, city); -- the domains

--within this domain pkg
-- This generic, abstractdomain_generator, is instantiated once
-- for each domain package

package dornaini is new abstract_domain_generator

("SuppliersDefinitionPkg", doms) ;

-- This generic, generatedomain is instantiated once for each
-- abstract domain within the package

package first is new domainl.generate_domain
(sno, char, , 5, contains null);

package second is new domainl.generatedomain
(sname, char, i, 20, contains null);

package third is new domainl.generate_domain
(status, th t1 0, 100, contains null);

package fourth is new domainl.generae_domain

(city, char, 1,15,contains null);
begin

startgeneration; -- procedure call to start generating
-- the packages

end;

-- second domain would go here
-- third etc...

end domain-view;

Lockheed Software Technology Center 8

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

Abstract Domain Generator

The AbstracLDomainGenerator is a generic package containing levels of nested generics, which

when instantiated by the interface program in will automatically generate domain packages needed.

with generatorsupport;
use generatorsupport;

generic
domainpackagename: string; -- what the domain package will be

-- named

type domains is (<>); -- one for each domain you will have
package abstract-domaingenerator is
generic
type name: domains;
class: class-types;
rangestart: integer; -- represents length, range, etc.
rangestop: integer;
nullbearing: null-indicator:= containsnull;

package generatedomain is
end generatedomain;

generic
typename: nomains;
class: classtypes;
rangebasedon: domains; -- used when this types range is based

-- on lengths specified by anther domain
nullbearing: null indicator:= contains-null;

package generate domain2 is
end generatedomain2;

end abstractdomaingenerator;

AbstractInterfaceView

The AbstractInterfaceView is written by the interface programmer to describe the records and the

procedures to be included in the abstract interface.

with basespecific domains; -- generated automatically
use basespecific domains;
with abstractinterface_generator;
with generator-support;
use generatorsupport;

procedure abstract interface-view is
type records is (supplierrecordtype); -- only one record in

-- this example

type procs is (acquiresupplier, incrstatus, setstatus);
-- 3 procedures in the abstract interface specification
-- The first level of instantiation is for the entire abstract
-- interface..it is done only once

Lockheed Software Technology Center 9

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Mehodology LMSC-F376700

package ab if is new abstract interface_generator(
concrete module name => "example_c",

abstract interface name => "example_cmodule",
record-names => records,
procedurenames => procs);

begin
declare
type components is (sno, sname, status, city);
-- components of this record
-- The following is the instantiation of the record generator
-- generic..once for each record type declaration in the
-- abstract interface

package first-record is new ab if.recordgenerator(
components in record => components,
recordname => supplierrecordtype);

-- The following are instantiations of the component
-- generator generic..once for each component of this record

package first_component is new
firstrecord.component_generator(
componentname => sno,
componentdomaintype => snonotnull);

package second component is new
first record.component_generator(
componentname => sname,
componentdomaintype => sname type);

package thirdcomponent is new
first record.component_generator(
componentname => status,
componentdomain type => status_type);

package fourth_component is new
first record.component_generator(
componentname => city,
componentdomaintype => city_type);

begin
start_generation; -- calls to initiate the generation of

-- records
end;

-- next record here
-- next record here ...

declare
type params is (sno, supplierrecord, found);

-- The following instantiation is for procedures within the
-- abstract interface. It is done once for each procedure

package procl is new abif.proceduregenerator(
procedurename => acquiresupplier,
parameters => params);

-- The following generic is for describing parameters to
-- this procedure. Parameter type will determine which
-- generic is instantiated. A generic will be

Lockheed Software Technology Center 10

CDRL 2000 A Technial Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

-- instantiated for each parameter.

package paraml is new
procl.params of domain type_generator(params => sno,
itstype => sno not null,
its mode => in_param);

package param2 is new
procl.params of recordtypegenerator(params =>
supplier record,
itstype => supplier_record type,
its mode => inoutparam);

package param3 is new
procl.params of booleantype_generator(params => found,
itsmode => out_param);

begin
start_generation; -- calls to initiate the generation of

--procedures
end;
-- next procedure here
-- next procedure here ...

end abstractinterface-view;

AbstractInterfaceGenerator

The AbstractInterface_Generator is a deliverable of the contract. It contains levels of nested

generics that, when instantiated by the interface program (Abstract_Interface_View), will

automatically generate the abstract interface (specification and body).

with generatorsupport;
use generatorsupport;
with base_specificdomains; -- automatically generated package
use base_specific_domains;

generic
-- first parameter represents name of the concrete module
concretemodulename : string;
-- second parameter represents name of the abstract i/f
abstract interface name : string;
type record names is (<>); -- names of all records to be declared
type procedurenames is (<>); -- names all procs to be declared

package abstractinterface_generator is

-- The following generic, recordgenerator is instantiated once
-- for each record in the interface

generic
-- first parameter represents components in this record
type components inrecord is (<>);
record name : record-names;

package recordgenerator is

Lockheed Software Technology Center 11

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

-- This following generic, component_generator is instantiated
-- once for each component within the record

generic
component-name : components in record;
componentdomaintype : base_specific domain_types;

package componentgenerator is
end component_generator;

end recordgenerator;

-- The following generic, procedure generator, is instantiated
-- once for each procedure in the interface

generic
procedurename : procedure-names;
type parameters is (<>);

package procedure_generator is

-- A generic is instantiated once for each parameter to this
-- procedure. The type of the parameter will determine which
-- generic is instantiated

generic
params : parameters;
itstype base_specificdomain_types;
its mode mode;

package params of domain_typegenerator is
end params of domain type_generator;

-- Note this generic is for parameters of type record-type

generic
params : parameters;
its_type : recordnames;
its mode : mode;

package paramsofrecordtypegenerator is
end paramsofrecord_type_generator;

-- Note this generic is for parameters of type boolean

generic
params : parameters;
its mode : mode;

package params of booleantype_generator is
end paramsofboolean_type generator;

end proceduregenerator;

end abstractinterfacegenerator;

Lockheed Software Technology Center 12

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

SuppliersDefinitionPkg

The SuppliersDomainPkd is automatically created after execution of the domainview described

earlier. It represents the domain package(s) that the interface programmer and the application

programmer will use.

with SQLCharPkg; use SQL CharPkg;
with SQLInt_Pkg; use SQLInt_Pkg;

package SuppliersDefinitonPkg is

type SNONN Base is new SQLChar Not Null;
subtype SNO Not Null is SNONNBase (1..5);
type SNOBase is new SQLChar;
subtype SNOType is SNO Base (SNO not Null'Length);
package SNOOps is new SQLChar_Ops (SNOBase, SNONNBase);

type SNAMENN Base is new SQL Char Not Null;
subtype SNAME Not-Null is SNAMENNBase (1..20);
type SNAME Base is new SQLChar;-
subtype SNAME_Type is SNAME Base (SNAME not Null'Length);
package SNAMEOps is new SQLChar_Ops (SNAMEBase, SNAMENNBase);

type StatusNot null is new SQLIntNot null;
type Status-Type is new SQLInt;
package StatusOps is new SQL Int_Ops (Status-Type,

StatusNotNull);

type CITYNN Base is new SQLCharNotNull;
subtype CITYNotNull is CITYNNBase (l..15);
type CITY Base is new SQL Char;
subtype CITYType is CITY Base (CITY notNull'Length);
package CITYOps is new SQL_Char_Ops (CITYBase, CITYNNBase);

end SuppliersDefinitionPkg;

AbstractInterface (Ada Spec and Body)

Abstract Interface (Ada spec and body) is automatically generated from the execution of

AbstractInterfaceView described earlier This package is the application programmers interface to
the SQL data base. (Note: Only a portion of the generated code is presented here).

with suppliersdefintion_pkg;
use suppliers_defintion_pkg;

package examplec module is
type supplier_recordtype is record
sno : sno not null;
sname : sname-type;
status : statustype;
city : citytype;

Lockheed Software Technology Center 13

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

end record;

proce(,ure acquiresupplier (snoin : in sno not null;
supplierrecord : in out supplier-recordtype;
found : out boolean);

end example_cmodule;

with sqlstandard, sql_communications_pkg, sqldatabaseerror_pkg,
example_concretemodule;
use sqlstandard, sql_communications_pkg, sql_databaseerror_pkg,
example_concretemodule;

package example_c module body is
use sname_ops, status_ops, city_ops;

procedure acquiresupplier (sno in : in sno not null;
supplier record : in out supplier-record type;
found : out boolean) is

sname c char (sname not null'range);
status c int;
city_c-: char (city_not null'range);
snameindic, statusindic, cityindic : indicatortype;

begin
exampleconcrete module.acquiresupplier (char (sno in),

char (supplierrecord.sno),
snamec, sname indic,
status c, status indic,
city_c, city_indic,
sqlcode);

-- logic of body will be generated here
end acquiresupplier;

end example_cmodule;

DEVELOPMENT APPROACH

The CDRL delivery of Ada code for this contract supports iterative prototype development. The

successive systems will be developed and delivered in the following manner.

The first iteration of the project will support automatic generation of the Ada specifications for the

abstract module and the domain packages. This will be done by writing an Ada procedure that,

when executed, will automatically generate the code. The content and semantics c" this procedure

will be determined during the first iteration also.

Lockheed Software Technology Ccntcr 14

CDRL 2000 A Technical Plan for AdalSQL BindingSupporting the SAME Methodology LMSC-F376700

The second iteration of the project will support automatic generation of the abstract module body

and the SQL concrete module. This will require refining the content and semantics of the

procedure developed in the first iteration to contain SQL semantic information specific to an

application.

Time permitting, the final iteration of the project will address automatic generation of the the data

definition language and an implementation without a module language compiler. Modifying the

implementation to support a DBMS that does not include a module language compiler will prove

the feasibility of the approach for any SQL-based DBMS, specifically the DBMS chosen for use in

the Software Repository.

In general, this contract will explore the feasibility of automatic code generation to support the

SAME methodology for accessing an SQL database from within an Ada program. The contract

will not attempt to rework or refine the definition of the SAME. There are however, several open

issues raised in [1] left to be addressed by specific implementations. These issues are detailed here

and our approach to their implementation is given.

Decimal Data Type

ANSI SQL supports the type decimal. The Ada programming language, however supports no

directly analogous type. Furthermore, ANSI standard SQL, as described in [2], does not support

decimal data in Ada programs. The SAME standard, therefore, does not provide a standard

support package for null and non-null bearing decimal types. [1] does detail a method for

providing decimal data type support for numeric data coded in binary coded decimal (BCD). This

choice was made since any DBMS that supports the decimal type is likely to do so by storing

values of the type in the machine's packed or binary coded decimal representation. Support for

BCD in SAME is that of an abstract data type whose fundamental operations (arithmetic,

comparison, etc.) are provided by assembler-level routines. It is inefficient in comparison to

software that might be provided by a compiler that directly supports BCD. Furthermore, this

implementation would be specific to each assembly language for each machine. To implement a

similar approach for this contract would require learning the assembler language for the VAX

workstations hardware and developing routines for decimal support. We believe this approach is

too industrious (and completely nonportable) for an 8-nionth contract. Furthermore, the DBMS

used for this contract, VAX RDB, provides limited support for packed decimal type. Because the

data bases that underlie VAX SQL do not support the data type, specifying the decimal data type

for a column will generate a warning message and create the column with a data type that depends

on the precision argument specified:

Lockheed Software Technology Center 15

CDRL 2000 A Technical Plan for Ada/SQL BindingSupporting the SAME Methodology LMSC-F376700

• decimal(l) through decimal(4) are converted to smallint,

" decimal(5) through decimal(9) are convened to integer,

* decimal(10) through decimal(18) are converted to quadword, etc.

Our implementation will allow this automatic conversion also. Should a standard implementation

for decimal support be incorporated into the ANSI standard, its addition to this implementation

would be straightforward.

Arbitrary Data Types

SAME provides standard support for types in ANSI standard SQL. Many data base management

systems extend the standard to other types. SAME documentation outlines the way a SAME user

can extend the data typing facilities. While this approach is not easily automated (and possibly not
implementable at all), it is quite straightforward. SAME provides standard support for Ada

enumeration types and presents two separate support packages for the date-time data type to

demonstrate type extension. Time permitting, a simple record type will be defined within the Ada

application domain and support for arbitrary type mapping will be developed.

Using SAME Without a Module Language Compiler

The SAME approach assumes the existence of an SQL module language compiler. However, the
approach may still be used in environments where no such compiler exists. In fact, the STARS

repository data base and associated environment may not include an SQL module language

compiler. Therefore, this project will simulate the use of a module language comp.ler for some

data base as deemed appropriate by IBM. Earlier discussions have suggested Oracle as such a
possibility. Therefore, initial research will head in that direction. As an interesting note, when

researching Ada interfaces available with Oracle, such as Pro*Ada, we found that the decimal data
type, as discussed previously, is not supported by the Oracle Call Interface, further substantiating

our decision not include specific support for this type in the Ada program.

REFERENCES

[1] M. H. Graham. 1989. Guidelines for the Use of the SAME. SEI Technical Report

CMU/SEI-89-TR-16 and ESD-TR-89-24. Pittsburgh, PA: Software Engineering Institute,

Carnegie Mellon University.

[2] Database Language--SQL. American National Standards Institute, 1986. X3.135-1986.

Lockheed Software Technology Center 16

